王瀚艺
作者: 佚名 发布时间: 2022年06月08日 15:27 浏览次数:

王瀚艺

职称职务

教授、博士生导师


 

 

 

Email

hanyi.wang@cqu.edu.cn

联系地址

重庆市沙坪坝区沙正街174
 
重庆大学A区资源与安全学院/400030

研究方向

非常规油气开采、水力压裂、压裂评价诊断及相关设备,生产智能监测诊断,基于诊断和监测数的人工智能和机器学习,据地下储能及相关设备,地热能开发及相关设备,井下声波监测与反演。

个人简历

王瀚艺,教授、博士生导师,获国家海外高层次人才项目资助。本科毕业于西南石油大学双一流学科。博士毕业于美国石油工程专业排名第一的德克萨斯大学奥斯汀分校石油与地质科学系。在研究生和博士阶段分别师从现代储层改造理论奠基人Michael J. Economides和美国工程院院士Mukul Sharma(博士答辩委员会成员还包括美国斯坦福大学客座教授,美国ResFrac公司首席执行官Mark McClure和美国康菲石油公司全球首席工程师 Dave Cramer)。拥有多年的海外工作经验,曾就职于斯伦贝谢等跨国公司,长期从事非常规地质能源(页岩油气、煤层气、致密油气、地热)开采技术和水力压裂研究。参与了美国多个盆地的页岩油气工程和科研项目,以及美国能源部主导的HFTS大型现场论证项目。(截至到2024年底)相关成果在国际权威期刊和SPE顶级会议发表论文50余篇,总引用超过2100+, H因子24,授权美国发明专利2项。2篇论文被评为ESI高被引论文,1篇论文获得美国岩石力学协会(American Rock Mechanics   Association)最佳论文奖。发表论文被石油天然气行业最具影响力的商业月刊《Journal of   Petroleum Technology》多次报导。发表论文被美国斯坦福大学教授、美国工程院院士Mark   Zoback 院士主讲的网上公开课《Unconventional Reservoir   Geomechanics》详细讨论。美国工程院院士Derek Elsworth、美国工程院院士Akhil Datta-Gupta、美国工程院院士Christine   Ehlig-Economides、美国工程院院士张东晓和中国工程院院士李根生都在发表论文中引用和肯定了王瀚艺教授的相关研究工作。

代表性研究项目

1. 国家海外高层次人才引进项目,2022-2025,主持;

2. 美国鹰堡盆地页岩凝析气产量瞬态分析研究,2019-2020,主持

3. 美国能源部水力压裂HFTS1大型现场实验论证项目,2016-2019,参与;

4. 美国马塞勒斯和尤蒂卡页岩气开采项目,2018-2019,参与;

5. 美国巴肯盆地页岩油小型压裂设计和分析,2017-2018,主持;

6. 美国德州二叠纪盆地页岩油压降和回流建模与分析,2016-2017,主持;

7. 巴西桑托斯盆地盐下油田井壁稳定性研究,2013-2015 主持

8. 澳大利亚煤层气注热提高采收率研究,2013-2014,主持;

9. 四川盆地页岩气水平井随钻测量/测井, 2010-2012, 参与

 

代表性获奖

重庆市学科技术带头人(能源动力类)

美国岩石力学协会(American Rock   Mechanics Association)最佳论文奖(best paper award

代表性专利

System and Method for Improving   Integrity of Cased Wellbores. US 16693224

Systems and Methods for Estimating   Hydraulic Fracture Surface Area. US 10982535

代表性专著、教材


代表性论文

谷歌学术主页:https://scholar.google.com/citations?user=FaUobqMAAAAJ&hl=en  

代表性期刊论文

[1] Su,X and Wang, H. 2025. Theoretical and Simulation Research on In-situ Measurement of   Perforation Penetration Depth Based on Acoustic Resonator Principle. Geophysics. (Revision)

[2] Gao. J, Wang,   H. 2025.   Molecular dynamics simulation study on the viscosity increasing and drag   reducing properties of nanoparticles-enhanced fracturing fluid. Geoenergy Science and   Engineering (Revision)

[3] Wang, H., Chen, Y., Zhu, M. 2025. Evaluate hydraulic fracturing effectiveness   by combining water hammer analysis and unified transient analysis: A case   study of Gulong shale oil. SPE Journal, (Revision).

[4] Gu,T., Wang,H., Gan Q, Zheng S. 2025. The   Impact of Forced Closure on Proppant Distribution of Hydraulic Fracturing in   Shale Formations. Deep Underground Science and Engineering. (PrePrint)

[5] Wei,X., Wang,H. 2025. Evaluation of Geothermal   Exploitation Using Abandoned Horizontal Wells in Sichuan Basin. Journal of Renewable and   Sustainable Energy. https://doi.org/10.1063/5.0258305

[6] Chen,Y. Wang,   H. and Sharma,   M. 2025. The benefits and challenges of well monitoring of Gulong shale oil. Earth Energy Science.   https://doi.org/10.1016/j.ees.2024.12.002

[7] Yang, Z. Wang, H. Sharma, M. Madeci, E. 2024. A fault activation-shearing-sliding   peridynamic model exploring the role of static and kinetic frictional   contacts. International   Journal of Rock Mechanics and Mining Sciences, Vol(183):105946. https://doi.org/10.1016/j.ijrmms.2024.105946

[8] Yang, Z. Wang, H. Sharma, M. 2024. A peridynamic   compensated critical energy density criterion for mixed-mode fracturing in   quasi-brittle materials. Theoretical and Applied Fracture Mechanics, Vol(134):104736. https://doi.org/10.1016/j.tafmec.2024.104736

[9] Hu. Z, Wang,   H. Zheng, S. 2024.   Numerical Modelling of Energy Storage using Hydraulic Fracturing in Shale   Formations. Geoenergy   Science and Engineering, Vol(242):213424. https://doi.org/10.1016/j.geoen.2024.213424

[10] Hu. Z, Wang,   H. 2024. Feasibility   study of geothermal assisted energy storage using hydraulic fracturing. Geoenergy Science and   Engineering, Vol(242):123220.   https://doi.org/10.1016/j.geoen.2024.213220

[11] Gao, J., Wang, H., and Sharma, M. 2024. Research progress and prospects of CO2   fracturing for developing unconventional energy sources. Geoenergy Science and   Engineering,   213137. https://doi.org/10.1016/j.geoen.2024.213137

[12] Hu. Z, Wang,   H. 2024. Feasibility   study of energy storage using hydraulic fracturing in shale formations. Applied Energy, Vol(354):122251. https://doi.org/10.1016/ j.apenergy.2023.122251

[13] Wang, H. and Sharma, M.M., 2023. Uniquely Determine Fracture Dimension and   Formation Permeability from Diagnostic Fracture Injection Test. Rock Mechanics Bulletin, p.100040.   https://doi.org/10.1016/j.rockmb.2023.100040

[14] Wang,   H.   2022. Introduce a Novel Constant Pressure Injection Test for Estimating   Hydraulic Fracture Surface Area. Journal of Natural Gas Science and Engineering Vol(102)   :104603.. https://doi.org/10.1016/j.jngse.2022.104603

[15] Wang,   H., McGowen, H and Sharma, M.M. 2021, Unified Transient Analysis (UTA) of Production   and Shut-in Data from Hydraulic Fractured Horizontal Wells. Journal of Petroleum Science and   Engineering   Vol(209):109876. https://doi.org/10.1016/j.petrol.2021.109876

[16] Wang,   H.,   Elliott, B.M. and Sharma, M.M. 2021, Pressure Decline   Analysis in Fractured Horizontal Wells: Comparison between Diagnostic   Fracture Injection Test, Flowback, and Main Stage Falloff. SPE   Drilling and Completion. 36 (03): 717–729. https://doi.org/10.2118/201672-PA

[17] Wang,   H and Sharma, M.M. 2020. A   Rapid Injection Flowback Test (RIFT) to Estimate In-situ Stress and Pore   Pressure. Journal of Petroleum Science   and Engineering, Vol(190):107108. https://doi.org/10.1016/j.petrol.2020.107108

[18] Wang,   H. 2019. A Non-isothermal   Wellbore Model for High Pressure High Temperature Natural Gas Reservoirs and   Its Application in Mitigating Wax Deposition. Journal of Natural Gas Science and Engineering, Vol(72):103016.   https://doi.org/10.1016/j.jngse.2019.103016

[19] Wang,   H. 2019. Hydraulic Fracture   Propagation in Naturally Fractured Reservoirs: Complex Fracture or Fracture   Networks. Journal of Natural Gas   Science and Engineering, Vol(68): 102911.   https://doi.org/10.1016/j.jngse.2019.102911

[20] Wang,   H and Sharma, M.M. 2019.   Determine in-situ Stress and Characterize Complex Fractures in Naturally   Fractured Reservoirs with Diagnostic Fracture Injection Tests. Rock Mechanics and Rock Engineering, 52(12):5025-5045. https://doi.org/10.1007/s00603-019-01793-w

[21] Wang,   H and Sharma, M.M. 2019. A   Novel Approach for Estimating Formation Permeability and Revisit   After-closure Analysis of Diagnostic Fracture Injection Tests. SPE Journal, 24(04):1809-1829.   http://doi.org/10.2118/ 194344-PA

[22] Zhou, X., Yuan, Q., Rui, Z., Wang, H., Feng, J., Zhang, L. and   Zeng, F., 2019. Feasibility study of CO2 huff'n'puff process to enhance heavy   oil recovery via long core experiments. Applied Energy, Vol(236):526-539. https://doi.org/10.1016/j.apenergy.2018.12.007

[23] Zhou, X., Yuan, Q., Zhang, Y., Wang, H., Zeng, F. and Zhang, L.,   2019. Performance evaluation of CO2 flooding process in tight oil   reservoir via experimental and numerical simulation studies. Fuel, Vol(236):730-746.   https://doi.org/10.1016/j.fuel.2018.09.035

[24] Wang,   H and Sharma, M.M. 2018.   Estimating Unpropped-Fracture Conductivity and Fracture Compliance from   Diagnostic Fracture-Injection Tests. SPE   Journal, 23(05):1648-1668. http://dx.doi.org/10.2118/ 189844-PA

[25] Mirani, A., Marongiu-Porcu, M., Wang, H. and Enkababian, P., 2018.   Production-pressure-drawdown management for fractured horizontal wells in   shale-gas formations. SPE   Reservoir Evaluation & Engineering, 21(03):550-565.   https://doi.org/10.2118/181365-PA

[26] Wang,   H and Sharma, M.M. 2018.   Modelling of Hydraulic Fracture Closure on Proppants with Proppant Settling. Journal of Petroleum Science and   Engineering, Vol(171):636-645.   https://doi.org/10.1016/j.petrol.2018.07.067

[27] Wang,   H. 2018. Discrete Fracture   Networks Modeling of Shale Gas Production and Revisit Rate Transient Analysis   in Heterogeneous Fractured Reservoirs. Journal   of Petroleum Science and Engineering, Vol (169):796-812.   https://doi.org/10.1016/j.petrol.2018.05.029

[28] Wang,   H., Yi,S., and Sharma,   M.M. 2018. A Computationally Efficient   Approach to Modeling Contact Problems and Fracture Closure Using Superposition Method. Theoretical and Applied   Fracture Mechanics, Vol(93): 276-287.   https://doi.org/10.1016/j.tafmec.2017.09.009

[29] Wang,   H and Sharma, M.M. 2017. A   Non-Local Model for Fracture Closure on Rough Fracture Faces and Asperities. Journal of Petroleum Science and Engineering,   Vol (154):425-437. http://dx.doi.org/ 10.1016/j.petrol.2017.04.024

[30] Wang,   H. 2017, A Numerical Study of   Thermal-Hydraulic-Mechanical Simulation with the Application of Thermal   Recovery in Fractured Shale Gas Reservoirs. SPE Reservoir Evaluation & Engineering , 20(03): 513-531.   http://dx.doi.org/10.2118/ 183637-PA

[31] Wang,   H. 2017. What Factors Control   Shale Gas Production and Production Decline Trend in Fractured Systems: A   Comprehensive Analysis and Investigation. SPE Journal, Vol 22(02): 562-581. http://dx.doi.org/10.2118/179967-PA

[32] Wang,   H. and Samuel, R. 2016, 3D   Geomechanical Modeling of Salt Creep Behavior on Wellbore Casing for Pre-Salt   Reservoirs. SPE Drilling &   Completion, 31(04):261-272. http://dx.doi.org/10.2118/166144-PA

[33] Wang, H. 2016. Numerical   Investigation of Fracture Spacing and Sequencing Effects on Multiple   Hydraulic Fracture Interference and Coalescence in Brittle and Ductile   Reservoir Rocks. Engineering Fracture   Mechanics, Vol (157): 107-124. http://dx.doi.org/10.1016/j.engfracmech.
  2016.02.025

[34] Wang, H. 2016. Poro-Elasto-Plastic   Modeling of Complex Hydraulic Fracture Propagation: Simultaneous   Multi-Fracturing and Producing Well Interference. Acta Mechanica, 227(2):507-525.   http://dx.doi.org/10.1007/s00707-015-1455-7

[35] Wang, H., Marongiu-Porcu, M., and   Economides, M. J. 2016. Poroelastic and Poroplastic Modeling of Hydraulic   Fracturing in Brittle and Ductile Formations, SPE Production & Operations, 31(01): 47–59.   http://dx.doi.org/10.2118/168600-PA

[36] Wang, H. and Marongiu-Porcu, M. 2015.   Impact of Shale Gas Apparent Permeability on Production: Combined Effects of   Non-Darcy Flow/Gas-Slippage, Desorption and Geomechanics. SPE Reservoir Evaluation &   Engineering, 18 (04): 495-507. http://dx.doi.org/10.2118/173196-PA

[37] Wang, H. 2015. Numerical Modeling of   Non-Planar Hydraulic Fracture Propagation in Brittle and Ductile Rocks using   XFEM with Cohesive Zone Method. Journal   of Petroleum Science and Engineering, Vol (135):127-140.   http://dx.doi.org/10.1016/j.petrol.2015.08.010

[38] Wang, H.,   Ajao, O., and Economides, M. J. 2014. Conceptual Study of Thermal Stimulation   in Shale Gas Formations. Journal of   Natural Gas Science and Engineering, Vol (21): 874-885. http://dx.doi.org/   10.1016/j.jngse.2014.10.015

[39] He, S.,   Zou, Y., Quan, D. and Wang, H.,   2012. Application of RBF neural network and ANFIS on the prediction of   corrosion rate of pipeline steel in soil. Lecture Notes in Electrical Engineering. Springer, Berlin,   Heidelberg. Page 639-644. http://dx.doi.org/ 10.1007/978-3-642-25781-0_93

[40] Wang, H and He, S. 2010. Genetic Algorism Solving Globe   Optimal Problems of Multi-peak RBF Neural Network Model Based on MATLAB. Microcomputer and Its Applications.   Vol (13): 3-6. http://dx.doi.org/10.3969/j.issn.1674-7720.2010.13.002

代表性会议论文

[41] Wang, H., and Sharma, M.M. 2021. Unified   Pressure and Rate Transient Analysis for Production and Shut-in of Fractured   Horizontal Wells. Paper SPE 204136 presented at the SPE Hydraulic Fracturing   Technology Conference and Exhibition, The Woodlands, Texas, 4 - 6 May.   http://dx.doi.org/10.2118/ 204136 -MS.

[42] Wang, H., Elliott, B.M. and Sharma,   M.M. 2020. Estimating Reservoir and Fracture Properties from Stage-by-stage   Pressure Decline Analysis in Horizontal Wells. Paper SPE 201672 presented at   the SPE Annual   Technical Conference and Exhibition, Denver, Colorado, 27-29 October.   http://dx.doi.org/10.2118/201672-MS.

[43] Zheng, S., Manchanda, R., Wang, H. and Sharma, M.M. 2020. DFIT   Analysis and Interpretation in Layered Rocks. Paper SPE 199690 presented at   the SPE   Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 4 - 6   Feb. http://dx.doi.org/10.2118/ 199690-MS.

[44] Wang, H and Sharma, M.M. 2020. A Rapid Injection Flow-back Test (RIFT) To   Estimate In-situ Stress and Pore Pressure in A Single Test. Paper SPE 199732   presented at the SPE Hydraulic Fracturing Technology Conference and   Exhibition, The Woodlands, Texas, 4 - 6 Feb. http://dx.doi.org/10.2118/ 199732-MS.

[45] Zheng, S., Manchanda, R., Wang,   H. and Sharma, M., 2019, July. Fully 3-D Simulation of Diagnostic   Fracture Injection Tests with Application in Depleted Reservoirs. Paper   presented at the Unconventional Resources Technology Conference, Denver, Colorado, 22-24 July. https://doi.org/10.15530/urtec-2019-314

[46] Wang, H and Sharma, M.M. 2019. A Novel Approach for Estimating Formation   Permeability and Revisit After-Closure Analysis from DFIT. Paper SPE 194344   presented at the SPE Hydraulic Fracturing Technology Conference and   Exhibition, The Woodlands, Texas, 5-7 Feb. http://dx.doi.org/10.2118/ 194344-MS.

[47] Wang, H and Sharma, M.M. 2018. Estimating Fracture Closure Stress in   Naturally Fractured Reservoirs with Diagnostic Fracture Injection Tests.   Paper ARMA-2018-225 presented at the 52nd US Rock Mechanics /   Geomechanics Symposium, held in Seattle, Washington, June 17-20.

[48] Wang, H and Sharma, M.M. 2018. Estimating Unpropped Fracture Conductivity   and Compliance from Diagnostic Fracture Injection Tests. Paper SPE 189844   presented at the SPE Hydraulic Fracturing Technology Conference and   Exhibition, The Woodlands, Texas, 23 - 25 Jan. http://dx.doi.org/10.2118/   189844-MS.

[49] Wang, H and Sharma, M.M. 2017. New Variable Compliance Method for   Estimating Closure Stress and Fracture Compliance from DFIT data. Paper SPE   187348 presented at the SPE Annual Technical Conference and Exhibition   held in San Antonio, TX, USA, 09 – 11 October. http://dx.doi.org/10.2118/   187348-MS

[50] Mirani, A., Marongiu-Porcu, M., Wang, H., and Philippe, E. 2016. Production Pressure Drawdown   Management for Fractured Horizontal Wells in Shale Gas Formations. Paper SPE 181365   will be presented at the SPE Annual Technical Conference and Exhibition   held in Dubai, UAE, 26-28 Sep. http://dx.doi.org/10.2118/181365-MS

[51] Wang, H. 2016. What Factors Control Shale Gas Production Decline Trend: A   Comprehensive Analysis and Investigation. Paper SPE-179967-MS presented at   the SPE/IAEE Hydrocarbon Economics and Evaluation Symposium, held at   Houston, Texas, 17-18 May. http://dx.doi.org/10.2118/   179967-MS

[52] Samuel, R & Wang, H.   2015, Optimized Centralizer Placement for Pre-Salt Formation. Paper OTC 26092   presented at the Offshore Technology Conference held in Rio de Janeiro,   Brazil, 27–29 October. http://dx.doi.org/10.4043/26092-MS

[53] Wang, H., Merry, H., Amorer, G. & Kong, B. 2015. Enhance Hydraulic   Fractured Coalbed Methane Recovery by Thermal Stimulation. Paper SPE 175927   presented at the SPE Unconventional Resources Conference to be held in   Calgary, Alberta, Canada 20–22 Oct. http://dx.doi.org/10.2118/175927-MS

[54] Yue, L.,Wang, H., Suai,   H., & Nikolaou, M. 2015. Increasing Shale Gas Recovery through Thermal   Stimulation: Analysis and an Experimental Study. Paper SPE 175070 presented   at the SPE Annual Technical Conference and Exhibition held in Houston,   Texas, USA, 28-30 Sep. http://dx.doi.org/10.2118/175070-MS

[55] Wang, H. & Marongiu-Porcu, M. 2015. A Unified Model of Matrix   Permeability in Shale Gas Formations. Paper SPE 173196 presented at the SPE   Reservoir Simulation Symposium, held in Houston, Texas, USA, 23-25 Feb. http://dx.doi.org/10.2118/173196-MS

[56] Wang, H., Kumar, A., & Samuel, R. 2014. Geomechanical Modeling of Wellbore Stability in Anisotropic Salt   Formation. Paper SPE 169458 presented at the SPE Latin American and   Caribbean Petroleum Engineering Conference held in Maracaibo, Venezuela,   21–23 May. http://dx.doi.org/10.2118/169458-MS

[57] Wang, H., Marongiu-Porcu, M., & Economides, M. J. 2014. Poroelastic   v.s Poroplastic Modeling of Hydraulic Fracturing. Paper SPE 168600 presented   at the SPE Hydraulic Fracturing Technology Conference held in The   Woodlands, Texas, USA, 4–6 February. http://dx.doi.org/10.2118/168600-MS

[58] Wang, H., & Samuel, R. 2013, Geomechanical Modeling of   Wellbore Stability in Salt Formation. Paper SPE 116114 presented at the SPE   Annual Technical Conference and Exhibition held in New Orleans,   Louisiana, USA, 30 September–2 October. http://dx.doi.org/10.2118/166144-MS

[59] Wang, H., and He, S. 2010. Predict Pipeline Steel Soil Corrosion   Rate Using Adaptive Neuro-Fuzzy Inference System. Proceeding of Computational   and Information Sciences, Dec. 2010, pp.1045-1048. http://dx.doi.org/ 10.1109/ICCIS.2010.258

 

版权所有©重庆大学资源与安全学院