胡二峰
作者: 佚名 发布时间: 2022年07月04日 16:20 浏览次数:

姓名

胡二峰

职称职务

副教授、硕士生导师




Email

ehu@cqu.edu.cn

联系地址

重庆大学A区资源与安全学院221

研究方向

含碳能源的低碳热转化、固废治理及资源化利用、危险固废协同处置。

(欢迎安全科学与工程、矿业工程、化学工程等专业学生报考)

个人简历

聚焦于利用内构件调控煤炭、油页岩热解反应过程热化学反应解耦,开展相关基础研究和技术开发工作。主持国家自然科学基金面上项目、国家自然科学基金青年项目、重庆市自然科学基金面上项目、中国博士后科学基金、科技部自主研发设备等10余项国家和省部级项目。发表高水平论文50余篇,参编教材1部,获授权国家发明专利10余项。

工作经历:

2019.07-至今,重庆大学,采矿工程系,讲师、副教授

2020.11-2023.06,重庆大学,卢义玉教授课题组,博士后

2017.07-2019.06,农业部规划设计研究院,赵立欣研究员课题组,博士后

2015.07-2017.01,加拿大新不伦瑞克大学,郑莹教授课题组,CSC联陪

2012.07-2015.06,中科院过程工程研究所,许光文研究员课题组,联培博士

教育经历:

2011.09-2017.06,中国矿业大学(北京),矿物加工工程,博士

2007.09-2011.06,河南理工大学,矿物加工工程,学士

学术兼职

担任国家自然科学基金函评专家、重庆市科委评审专家、重庆市经济和信息化委员会专家、教育部学位中心学位论文评审专家。现任Journal of Analytical and Applied PyrolysisResources Chemicals and MaterialsSustainable Carbon Materials期刊青年编委;长期担任AIChE JournalChemical Engineering JournalEnergyFuelECMBTJAAPSCI期刊审稿人,参与高水平学术成果的评审工作。

代表性研究项目

1. 国家自然科学基金面上项目,煤与生物质共热解驱动软锰矿热质传递的协同机制及碳-锰定向联产调控机理,主持

2. 国家自然科学青年基金,定向强化流场下低阶煤热解反应机理及过程调控研究,主持

3. 重庆市自然科学基金面上项目,低阶煤与生物质红外快速共热解反应机理及过程调控研究,主持

4. 科技部中央级大型科学仪器设备购置自主研发设备项目,定向热转化反应-气液固相原位在线表征系统,主持

5. 煤矿灾害动力学与控制国家重点实验室面上项目,长焰煤定向热转化基础研究及机理分析,主持

6. 重庆市留学回国人员创业创新支持计划,小粒径低阶煤定向热解反应机理及过程调控研究,主持

7. 重庆市出站来渝博士后择优资助项目,生物质热解炭化关键技术与工艺研究,主持

8. 重庆市博士后研究项目特别资助,红外快速热解医疗废物模型物反应特性及机理分析,主持

9. 中国博士后科学基金面上资助项目,扰动式内构件回转炉生物质热解基础研究及机理分析,主持

10. 中国科学院战略性先导科技专项低阶煤清洁高效利用关键技术与示范,参与

代表性专利

1. 胡二峰. 一种碳氢原料耦合废弃PVCLCD共热解提取InCl3的装置与方法, 202211380889.1,发明专利;

2. 胡二峰. 一种碳氢原料热解装置与热解方法202011233503.5,发明专利;

3. 胡二峰.生物质与低阶煤分离耦合传热板与低品位铁矿石的共热解系统,202110298334.1,发明专利;

4. 胡二峰.一种扰动式内构件回转炉生物质热解炭化多联产系统,201710739505.3,发明专利;

5. 胡二峰. 一种红外快速加热医疗废弃物的热解多联产系统202110874631.6,发明专利;

6. 胡二峰. 一种熔融盐加热医疗废弃物或废旧塑料的热解方法 202110874646.2 ,发明专利;

7. 胡二峰. 一种赤泥催化生物质红外热解的热解装置及热解方法-   202110296831.8,发明专利;

8. 胡二峰. 一种废机油热解装置与热解方法,202011233499.2,发明专利;

9. 胡二峰.多功能两段床热解系统监测控制平台,2020SR1874567,软件著作权;

10. 胡二峰.废机油热解控制系统及监测平台,2020SR1862029,软件著作权;

代表性论文*通讯作者)

1. Hu Erfeng, Zhang   Yue, Liu Zuohua, Yu Jianglong, et al. Insight into dechlorination of   pyrolysis oil during fast co-pyrolysis of high-alkali coal and polyvinyl   chloride (PVC)[J]. Chemical Engineering Journal, 2024: 153016.

2. Zeng Yongfu, Liu Zuohua, Yu Jianglong, Hu Erfeng*, et al. Pyrolysis kinetics and characteristics   of waste tyres: Products distribution and optimization via TG-FTIR-MS and   rapid infrared heating techniques[J]. Chemical Engineering Journal, 2024,   482: 149106.

3. Li Shuai, Hu Erfeng*, Xu Guangwen, et al. Rapid infrared co-pyrolysis performance of corn   stover and polyurethane foam waste for upgrading oil yield and quality[J].   Energy, 2025: 137258.

4. Zeng Yongfu, Hu Erfeng*, Xu Guangwen, et al. Synergistic co-pyrolysis of polyvinyl   chloride and corn stalk for improved products and dechlorination behavior[J].   Journal of Cleaner Production, 2025, 506: 145534.

5. Li Moshan, Hu Erfeng*, Liu Zuohua, Xu Guangwen, et al.Synergistic infrared   Co-pyrolysis for integrated resource Recovery: Gas-Induced metal extraction   from spent lithium-ion batteries and bio-oil upgrading[J]. Journal of Cleaner   Production, 2025, 522: 146311.

6. Xu Fan, Zeng Yongfu, Hu Erfeng*, et al. Enhanced oil and gas products in fast   coal pyrolysis over iron oxide using infrared heating[J]. Journal of   Analytical and Applied Pyrolysis, 2025: 107336.

7. Zeng Yue, Liu Zuohua, Hu Erfeng*,et al. Optimization of product distribution   during co-pyrolysis of furfural residues and waste tyres via response surface   method and infrared heating[J]. Separation and Purification Technology, 2025,   354: 129209.

8. Zhang Yue, Liu Zuohua, Hu Erfeng*,et al. Elucidating synergistic effects and   environmental value enhancement in infrared-Assisted Co-Pyrolysis of coal and   polyvinyl chloride[J]. Separation and Purification Technology, 2025, 357:   130071.

9. Li Shuai, Qu Rui, Hu Erfeng*, et al. Co-pyrolysis kinetics and enhanced synergy for   furfural residues and polyethylene using artificial neural network and fast   heating[J]. Waste Management, 2025, 195: 177-188.

10. Li Shuai, Zeng Yongfu, Hu Erfeng*, et al. Insight into fast infrared-assisted   and coal rank on pyrolysis kinetics and products distribution[J]. Journal of   Analytical and Applied Pyrolysis, 2025: 106986.

11. Zeng Yongfu, Liu Zuohua, Hu Erfeng*,et al. Insight into impact of co-pyrolysis   process parameters on cross-interaction of volatiles between furfural residue   and coal via rapid infrared heating[J]. Energy, 2024, 309: 133118.

12. Hu Erfeng*,Zhang Yue,   Liu Zuohua, et al. Enhanced synergies for product distributions and   interactions during co-pyrolysis between corn stover and tyres[J]. Journal of   Analytical and Applied Pyrolysis, 2024, 183: 106770.

13. Zhang Yue, Liu Zuohua, Hu Erfeng*, et al. Synergistic effects and comprehensive   analysis of interaction during infrared co-pyrolysis of furfural residues and   PVC[J]. Process Safety and Environmental Protection, 2024, 191: 2095-2103.

14. Zeng Yongfu, Liu Zuohua, Yu Jianglong, Hu Erfeng*,et al. Enhanced energy efficiency and fast   co-pyrolysis characteristics of biogas residues and long-flame coal using   infrared heating and TG-FTIR-MS[J]. Process Safety and Environmental   Protection, 2024.

15. Zhang Yue, Li   Moshan, Hu Erfeng*, Qu Rui, Li   Shuai, Xiong Qingang. Interaction and characteristics of furfural residues   and polyvinyl chloride in fast Co-pyrolysis. Front. Chem. Sci. Eng., 2024

16. Li Moshan, Lu   Yiyu, Hu Erfeng*, et al. Fast   co-pyrolysis characteristics of high-alkali coal and polyethylene using   infrared rapid heating[J]. Energy, 2023: 126635.

17. Li Chenhao, Liu   zuohua, Yu Jianglong, Hu Erfeng*   et al. Cross-interaction of volatiles in fast co-pyrolysis of waste tyre and   corn stover via TG-FTIR and rapid infrared heating techniques[J]. Waste   Management, 2023, 171: 421-432.

18. Li Chenhao, Liu   zuohua, Yu Jianglong, Hu Erfeng*   et al. Infrared heating and synergistic effects during fast co-pyrolysis of   corn stover and high alkali coal[J]. Process Safety and Environmental   Protection, 2023, 179: 812-821.

19. Dai Chongyang, Hu Erfeng*, Yang Yang, et al. Fast   co-pyrolysis behaviors and synergistic effects of corn stover and polyethylene   via rapid infrared heating[J]. Waste Management, 2023, 169: 147-156.

20. Li Moshan, Hu Erfeng*, Tian Yishui, et al. Fast   pyrolysis characteristics and its mechanism of corn stover over iron oxide   via quick infrared heating[J]. Waste Management, 2022, 149: 60-69.

21. Dai Chongyang, Hu Erfeng*, Tian Yishui, et al.   Infrared heated co-pyrolysis behavior of polyethylene and corn stover via   optimization of secondary reactions[J]. Journal of Analytical and Applied   Pyrolysis, 2022: 105565.

22. Hu Erfeng*, Tian   Yishui, Yang Yang, et al.   Pyrolysis behaviors of corn stover in new two-stage rotary kiln with   baffle[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105398.

23. Hu Erfeng*, Moshan   Li, Yishui Tian, et al. Pyrolysis   behaviors of anaerobic digestion residues in a fixed-bed reactor with rapid   infrared heating [J]. Environmental Science and Pollution Research,   2022:1-12.

24. Hu Erfeng*, Dai   Chongyang, Tian Yishui, et al. Infrared heated pyrolysis of corn stover:   Determination of kinetic and thermodynamic parameters[J]. Journal of   Analytical and Applied Pyrolysis, 2021: 105273.

25. Xu Shipei, Hu Erfeng*, Li Xingchun*, Xu Yu. Quantitative Analysis of Pore   Structure and Its Impact on Methane Adsorption Capacity of Coal[J]. Natural   Resources Research, 2021, 30(1): 605-620.

26. Hu Erfeng, Kyle   Rogers, Fu Xiaoheng*, et al. Coal pyrolysis and its mechanism in indirectly   heated fixed-bed with metallic heating plate enhancement[J]. Fuel, 2016, 185:   656-662.

27. Hu Erfeng, Zeng   Xi*, Fu Xiaoheng, et al. Characterization of coal pyrolysis in indirectly   heated fixed bed based on field effects[J]. Fuel, 2017, 200: 186-192.

28. Hu Erfeng, Zeng   Xi*, Fu Xiaoheng, et al. Effect of the moisture content in coal on the   pyrolysis behavior in an indirectly heated fixed-bed reactor with   internals[J]. Energy & Fuels, 2017, 31(2): 1347-1354.

29. Hu Erfeng, Zeng   Xi*, Wang Fang, et al. Effects of Metallic Heating Plates on Coal Pyrolysis   Behavior in a Fixed-Bed Reactor Enhanced with Internals[J]. Energy &   Fuels, 2017, 31(3): 2716-2721.

30. Hu Eefeng, Yao Zonglu, Zhao Lixin*, et al. Characteristics of   zeolite-modified NiMo/Al2O3 catalysts and their   hydrotreating performance for light cycled oil[J]. The Canadian Journal of   Chemical Engineering, 2019, 97(5): 1107-1113.

31. Zhang Chun, Wu   Rongcheng, Hu Erfeng, Liu Shuyuan, Xu Guangwen*. Coal Pyrolysis for High-Quality   Tar and Gas in 100 kg Fixed Bed Enhanced with Internals[J]. Energy & Fuels, 2014, 28 (11):7294-7302.

32. 胡二峰,武荣成,张纯,郭二卫,付晓恒,许光文*.间热径向流反应器料层厚度对煤热解特性的影响[J].化工学报,2015,66(02):738-745.

33. 胡二峰, 张纯,武荣成,付晓恒,许光文*.内构件固定床反应器中不同水分煤的热解特性[J].化工学报,2015,66(07):2656-2663.

34. 胡二峰,赵立欣*,姚宗路.石英管定向强化流场模拟内构件反应器不同厚度煤热解特性[J].煤炭学报,2018,43(12):3504-3509.

35. 胡二峰,赵立欣*,姚宗路.生物质热解影响因素及技术研究进展[J].农业工程学报,2018,34(14):212-220.

36. 胡二峰, 赵立欣*,姚宗路等.热解温度对回转窑玉米秸秆热解产物理化特性的影响[J].农业工程学报,2019,35(11):233-238.

37. 刘壮, 田宜水, 胡二峰*, . 低阶煤热解影响因素及其工艺技术研究进展[J]. 洁净煤技术, 2021, 27(1):50-59.

38. 曾永福,田宜水,胡二峰, 屈锐.长焰煤与糠醛渣共热解动力学、热力学及快速热解产物特性[J].太阳能学报, 2024,46(6):   108-114.

39. 李晨浩,田宜水,胡二峰*,.厌氧消化残渣与低阶长焰煤共热解特性[J].农业工程学报,2022,38(23):188-194.

40. 戴重阳,田宜水,胡二峰*,. 生物质与低阶煤共热解特性研究及其技术进展[J].太阳能学报, 2021,42(12):318-325.

41. 李沫杉,田宜水,胡二峰*,. 沼渣热解动力学、热力学分析及热解产物特性研究[J].太阳能学报, 2022,   43(6):225-233.

 

版权所有©重庆大学资源与安全学院