王瀚艺
作者: 佚名 发布时间: 2022年06月08日 15:27 浏览次数:

王瀚艺

                                                                                 

职称职务

教授、博士生导师


 

 

 

Email

hanyi.wang@cqu.edu.cn

联系地址

重庆市沙坪坝区沙正街174
 
重庆大学A区资源及环境科学学院/400030

研究方向

¨ 研究领域包括:非常规油气开采、水力压裂、压裂评价诊断及相关设备,生产智能监测诊断,基于诊断和监测数据的人工智能和机器学习,地下储能及相关设备,地热能开发及相关设备,井下声纳监测与反演,人工智能辅助建模。

¨ 本团队招收非全日制工程博士(面向企业技术/管理骨干)

¨ 本团队只招收内驱型和目标驱动型学生攻读硕士(计划2026年招收1名资源与环境专业研究生)和博士。本团队学生不打卡,不规定作息时间(成年人是自己选择的唯一负责人),但对自学能力要求高。

¨ 本团属于独立PI,队正在孵化多个产学研项目(包括Me Too/First In Class, 欢迎油气领域相关科技企业和有拓展海外市场需求的油服企业联系交流。

¨ 本团也孵化非油气领域产学研项目(把油气行业相关技术拓展到生态环保、低碳经济、新能源、生物医疗等跨学科领域)。

个人简历

王瀚艺,教授、博士生导师,获国家海外高层次人才项目资助。本科毕业于西南石油大学双一流学科(GPA Rank 1/246,本科学习阶段发表3篇学术论文,其中2篇第一作者)。研究生毕业于美国休斯顿大学(University of Houston)石油工程系,师从现代储层改造理论奠基人Michael   J. EconomidesJournal of Natural Gas Science and   Engineering创刊人),和美国哈里伯顿公司技术院士(Technology Fellow of   HalliburtonRobello Samuel。博士毕业于美国石油工程专业排名第一的德克萨斯大学奥斯汀分校(The University of Texas at Austin)石油与地质科学系,师从美国工程院院士(US National Academy of EngineeringMukul   Sharma。博士答辩委员会成员还包括美国斯坦福大学(Stanford University)客座教授,美国ResFrac Corporation公司首席执行官Mark McClure和美国康菲石油公司工程院士(Engineering Fellow of ConocoPhillipsDave   Cramer。博士期间以唯一单一作者发表SCI期刊论文10篇(其中4篇谷歌学术引用超100,单篇最高引用288)。博士阶段研究课题(Diagnostic Fracturing   Injection Test)成果被集成到多个商业软件,并为法国Kappa Engineering公司(全球领先的油气田软件服务商)技术总监(Technical DirectorOlivier Allain做邀请报告。博士阶段提出的回流辅助小型压裂技术(Rapid Injection Flow-back Test )已经被国内外相关公司广泛采用,成为替代传统的小型压裂获取低渗透率地层地应力和孔隙压力的行业规范(测试时间从数周降低到数小时)。

 

拥有多年的海外工作经验,曾就职于斯伦贝谢等跨国公司,长期从事非常规地质能源(页岩油气、煤层气、致密油气、地热、地下储能)相关研究,目前也是上市油田服务公司兼职技术顾问。参与了美国多个盆地的页岩油气工程和科研项目,以及美国能源部主导的HFTS大型现场论证项目。(截至到2025年底)相关成果在国际权威期刊和SPE顶级会议发表论文60余篇,总引用超过2300+, H因子252篇论文被评为ESI高被引论文,1篇论文获得美国岩石力学协会(American Rock Mechanics Association)最佳论文奖。发表论文被石油天然气行业最具影响力的商业月刊《Journal of Petroleum Technology》多次报导。发表论文被美国斯坦福大学教授、美国工程院院士Mark Zoback 院士主讲的网上公开课《Unconventional   Reservoir Geomechanics》详细讨论。美国工程院院士Derek Elsworth、美国工程院院士Akhil Datta-Gupta、美国工程院院士Christine   Ehlig-Economides、美国工程院院士张东晓和中国工程院院士李根生都在发表论文中引用和肯定了王瀚艺教授的相关研究工作。

 

谷歌学术主页:https://scholar.google.com/citations?user=FaUobqMAAAAJ&hl=en  

代表性研究项目

1. 国家海外高层次人才引进项目,2022-2025,主持;

2. 美国鹰堡盆地页岩凝析气产量瞬态分析研究,2019-2020,主持

3. 美国能源部水力压裂HFTS1大型现场实验论证项目,2016-2019,参与;

4. 美国马塞勒斯和尤蒂卡页岩气开采项目,2018-2019,参与;

5. 美国巴肯盆地页岩油小型压裂设计和分析,2017-2018,主持;

6. 美国德州二叠纪盆地页岩油压降和回流建模与分析,2016-2017,主持;

7. 巴西桑托斯盆地盐下油田井壁稳定性研究,2013-2015 主持

8. 澳大利亚煤层气注热提高采收率研究,2013-2014,主持;

9. 四川盆地页岩气水平井随钻测量/测井, 2010-2012, 参与

 

代表性获奖

重庆市学科技术带头人(能源动力类)

美国岩石力学协会(American Rock Mechanics Association)最佳论文奖(Best Paper Award

代表性专利

System and Method for Improving   Integrity of Cased Wellbores. US 16693224

Systems and Methods for Estimating   Hydraulic Fracture Surface Area. US 10982535

代表性专著、教材


代表性论文

压裂和生产评价诊断

[1] Chen,Y. and Wang, H. 2025. Automated   Algorithms and Workflow for Production Data Analysis of Hydraulic Fractured   Wells. SPE Journal, (Revision)

[2] Su,X and Wang, H. 2025. Theoretical and Simulation Research on In-situ Measurement of   Perforation Penetration Depth Based on Acoustic Resonator Principle. Geophysics.   (Revision)

[3] Wang, H., Chen, Y., Zhu, M. 2025.   Evaluate hydraulic fracturing effectiveness by combining water hammer   analysis and unified transient analysis: A case study of Gulong shale oil. SPE Journal, 30(11), 6913-6929.

[4] Chen,Y. Wang, H.   and Sharma, M. 2025. The benefits and challenges of well monitoring of Gulong   shale oil. Earth Energy Science, Vol(1) :120-122

[5] Wang,   H. 2022. Introduce a Novel   Constant Pressure Injection Test for Estimating Hydraulic Fracture Surface   Area. Journal of   Natural Gas Science and Engineering Vol(102) :104603.

[6] Wang,   H., McGowen, H and Sharma, M.M. 2021, Unified Transient   Analysis (UTA) of Production and Shut-in Data from Hydraulic Fractured   Horizontal Wells. Journal of   Petroleum Science and Engineering Vol(209):109876.

[7] Wang,   H., Elliott, B.M. and Sharma, M.M.   2021, Pressure Decline Analysis in Fractured   Horizontal Wells: Comparison between Diagnostic Fracture Injection Test,   Flowback, and Main Stage Falloff. SPE Drilling and Completion. 36 (03): 717–729.

[8] Mirani, A., Marongiu-Porcu, M., Wang, H. and Enkababian, P., 2018.   Production pressure drawdown management for fractured horizontal wells in   shale-gas formations. SPE   Reservoir Evaluation & Engineering, 21(03):550-565.

[9] Wang, H.   2018. Discrete Fracture Networks Modeling of Shale Gas Production and Revisit   Rate Transient Analysis in Heterogeneous Fractured Reservoirs. Journal of Petroleum Science and   Engineering, Vol (169):796-812.

[10] Wang, H., and Sharma, M.M. 2021. Unified Pressure and Rate Transient Analysis   for Production and Shut-in of Fractured Horizontal Wells. Paper SPE 204136   presented at the SPE Hydraulic   Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 4 - 6 May.

[11] Wang, H., Elliott, B.M. and Sharma, M.M. 2020. Estimating Reservoir and   Fracture Properties from Stage-by-stage Pressure Decline Analysis in   Horizontal Wells. Paper SPE 201672 presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 27-29 October.

[12] Mirani, A.,   Marongiu-Porcu, M., Wang, H., and   Philippe, E. 2016. Production Pressure Drawdown Management for Fractured   Horizontal Wells in Shale Gas Formations. Paper SPE 181365 will be presented   at the SPE Annual Technical Conference and Exhibition held in Dubai, UAE,   26-28 Sep.

地应力测试和地层参数(渗透率、天然裂缝特征、孔隙压力等)反演

[13] Wang, H. and Sharma, M.M., 2023. Uniquely Determine Fracture Dimension and   Formation Permeability from Diagnostic Fracture Injection Test. Rock Mechanics Bulletin,   p.100040.

[14] Wang,   H and Sharma, M.M. 2020. A Rapid Injection Flowback Test (RIFT)   to Estimate In-situ Stress and Pore Pressure. Journal of Petroleum Science and Engineering, Vol(190):107108.

[15] Wang,   H and Sharma,   M.M. 2019. Determine in-situ Stress and Characterize Complex Fractures in   Naturally Fractured Reservoirs with Diagnostic Fracture Injection Tests. Rock Mechanics and Rock Engineering, 52(12):5025-5045.

[16] Wang,   H and Sharma, M.M. 2019. A Novel Approach   for Estimating Formation Permeability and Revisit After-closure Analysis of   Diagnostic Fracture Injection Tests. SPE   Journal,

[17] Wang, H and Sharma, M.M. 2018. Estimating   Unpropped-Fracture Conductivity and Fracture Compliance from Diagnostic   Fracture-Injection Tests. SPE Journal,   23(05):1648-1668.

[18] Zheng, S., Manchanda, R., Wang, H. and Sharma, M.M. 2020.   DFIT Analysis and Interpretation in Layered Rocks. Paper SPE 199690 presented   at the SPE Hydraulic Fracturing Technology Conference and   Exhibition, The Woodlands, Texas, 4 - 6 Feb.

[19] Wang, H and Sharma, M.M. 2020. A Rapid Injection Flow-back   Test (RIFT) To Estimate In-situ Stress and Pore Pressure in A Single Test.   Paper SPE 199732 presented at the SPE Hydraulic Fracturing Technology   Conference and Exhibition, The Woodlands, Texas, 4 - 6 Feb

[20] Zheng, S., Manchanda, R., Wang,   H. and Sharma, M., 2019, July. Fully 3-D Simulation of Diagnostic   Fracture Injection Tests with Application in Depleted Reservoirs. Paper   presented at the Unconventional Resources Technology Conference, Denver, Colorado, 22-24   July.

[21] Wang, H and Sharma, M.M. 2019. A Novel Approach for   Estimating Formation Permeability and Revisit After-Closure Analysis from   DFIT. Paper SPE 194344 presented at the SPE Hydraulic Fracturing   Technology Conference and Exhibition, The Woodlands, Texas, 5-7 Feb.

[22] Wang, H and Sharma, M.M. 2018. Estimating Fracture Closure   Stress in Naturally Fractured Reservoirs with Diagnostic Fracture Injection   Tests. Paper ARMA-2018-225 presented at the 52nd US Rock   Mechanics / Geomechanics Symposium, held in Seattle, Washington, June   17-20.

[23] Wang, H and Sharma, M.M. 2018. Estimating Unpropped   Fracture Conductivity and Compliance from Diagnostic Fracture Injection   Tests. Paper SPE 189844 presented at the SPE Hydraulic Fracturing   Technology Conference and Exhibition, The Woodlands, Texas, 23 - 25 Jan.

[24] Wang, H and Sharma,   M.M. 2017. New Variable Compliance Method for Estimating Closure Stress and   Fracture Compliance from DFIT data. Paper SPE 187348 presented at the SPE   Annual Technical Conference and Exhibition held in San Antonio, TX, USA,   09 – 11 October.

少水压裂和泡沫驱油

[25] Gao, J., & Wang, H. 2025. Molecular dynamics simulation study on the viscosity increasing   and drag reducing properties of nanoparticles-enhanced fracturing fluid. Geoenergy Science and Engineering, 214328.

[26] Gao. J, Wang, H. 2025. Molecular dynamics simulation study on the viscosity increasing   and drag reducing properties of nanoparticles-enhanced fracturing fluid. Geoenergy Science and Engineering , 214328

[27] Gao, J., Wang,   H., and Sharma, M. 2024. Research progress and   prospects of CO2 fracturing for developing unconventional energy sources. Geoenergy Science and Engineering, 213137.

[28] Zhou, X., Yuan, Q., Rui, Z., Wang, H., Feng, J., Zhang, L. and   Zeng, F., 2019. Feasibility study of CO2 huff'n'puff process to enhance heavy   oil recovery via long core experiments. Applied Energy, Vol(236):526-539.

[29] Zhou, X., Yuan, Q., Zhang, Y., Wang, H., Zeng, F. and Zhang, L.,   2019. Performance evaluation of CO2 flooding process in tight oil   reservoir via experimental and numerical simulation studies. Fuel, Vol(236):730-746.

井筒-压裂-油气藏-多尺度-热流固耦合

[30] Yang, Z., Wang, H., & Madenci, E. 2025. Comparative 2D and 3D peridynamic modeling   of frictional failure in jointed rocks with a unified interface-orientation   identification method. Engineering   Geology, 108365.

[31] Gu,T., Wang,H., Gan Q, Zheng S. 2025. The Impact of Forced Closure on Proppant   Distribution of Hydraulic Fracturing in Shale Formations. Deep Underground Science and Engineering, 1-26

[32] Yang,   Z. Wang, H. Sharma, M. Madeci, E. 2024. A fault activation-shearing-sliding   peridynamic model exploring the role of static and kinetic frictional   contacts. International Journal of   Rock Mechanics and Mining Sciences, Vol(183):105946.

[33] Yang, Z. Wang, H. Sharma, M. 2024. A   peridynamic compensated critical energy density criterion for mixed-mode fracturing   in quasi-brittle materials. Theoretical and   Applied Fracture Mechanics, Vol(134):104736.

[34] Wang,   H. 2019. A Non-isothermal Wellbore Model for High Pressure   High Temperature Natural Gas Reservoirs and Its Application in Mitigating Wax   Deposition. Journal of Natural Gas   Science and Engineering, Vol(72):103016.

[35] Wang,   H. 2019.   Hydraulic Fracture Propagation in Naturally Fractured Reservoirs: Complex   Fracture or Fracture Networks. Journal   of Natural Gas Science and Engineering, Vol(68): 102911.

[36] Wang,   H and Sharma, M.M. 2018. Modelling of   Hydraulic Fracture Closure on Proppants with Proppant Settling. Journal of Petroleum Science and   Engineering, Vol(171):636-645.

[37] Wang, H., Yi,S., and Sharma, M.M. 2018. A Computationally Efficient Approach   to Modeling Contact Problems and Fracture Closure Using Superposition Method. Theoretical and Applied   Fracture Mechanics, Vol(93): 276-287

[38] Wang,   H and Sharma, M.M. 2017. A Non-Local   Model for Fracture Closure on Rough Fracture Faces and Asperities. Journal of Petroleum Science and   Engineering, Vol (154):425-437.

[39] Wang,   H. 2017, A Numerical Study of Thermal-Hydraulic-Mechanical   Simulation with the Application of Thermal Recovery in Fractured Shale Gas   Reservoirs. SPE Reservoir Evaluation   & Engineering , 20(03): 513-531.

[40] Wang,   H. 2017. What   Factors Control Shale Gas Production and Production Decline Trend in   Fractured Systems: A Comprehensive Analysis and Investigation. SPE Journal, Vol 22(02): 562-581.

[41] Wang, H. and   Samuel, R. 2016, 3D Geomechanical Modeling of Salt Creep Behavior on Wellbore   Casing for Pre-Salt Reservoirs. SPE   Drilling & Completion, 31(04):261-272.

[42] Wang,   H. 2016.   Numerical Investigation of Fracture Spacing and Sequencing Effects on   Multiple Hydraulic Fracture Interference and Coalescence in Brittle and   Ductile Reservoir Rocks. Engineering   Fracture Mechanics, Vol (157): 107-124.

[43] Wang,   H. 2016. Poro-Elasto-Plastic   Modeling of Complex Hydraulic Fracture Propagation: Simultaneous   Multi-Fracturing and Producing Well Interference. Acta Mechanica, 227(2):507-525.

[44] Wang,   H.,   Marongiu-Porcu, M., and Economides, M. J. 2016. Poroelastic and Poroplastic   Modeling of Hydraulic Fracturing in Brittle and Ductile Formations, SPE Production & Operations,   31(01): 47–59.

[45] Wang,   H. and Marongiu-Porcu, M. 2015. Impact of   Shale Gas Apparent Permeability on Production: Combined Effects of Non-Darcy   Flow/Gas-Slippage, Desorption and Geomechanics. SPE Reservoir Evaluation & Engineering, 18 (04): 495-507.

[46] Wang,   H. 2015. Numerical Modeling of Non-Planar   Hydraulic Fracture Propagation in Brittle and Ductile Rocks using XFEM with   Cohesive Zone Method. Journal of   Petroleum Science and Engineering, Vol (135):127-140.

[47] Wang,   H.,   Ajao, O., and Economides, M. J. 2014. Conceptual Study of Thermal Stimulation   in Shale Gas Formations. Journal of   Natural Gas Science and Engineering, Vol (21): 874-885.

[48] Wang, H. 2016. What Factors Control Shale Gas Production   Decline Trend: A Comprehensive Analysis and Investigation. Paper SPE-179967-MS   presented at the SPE/IAEE Hydrocarbon Economics and Evaluation Symposium,   held at Houston, Texas, 17-18 May.

[49] Samuel, R & Wang,   H. 2015, Optimized Centralizer Placement for Pre-Salt Formation. Paper   OTC 26092 presented at the Offshore Technology Conference held in Rio   de Janeiro, Brazil, 27–29 October.

[50] Wang, H., Merry, H., Amorer, G. & Kong, B. 2015.   Enhance Hydraulic Fractured Coalbed Methane Recovery by Thermal Stimulation.   Paper SPE 175927 presented at the SPE Unconventional Resources Conference   to be held in Calgary, Alberta, Canada 20–22 Oct.

[51] Yue, L.,Wang, H., Suai, H., & Nikolaou,   M. 2015. Increasing Shale Gas Recovery through Thermal Stimulation: Analysis   and an Experimental Study. Paper SPE 175070 presented at the SPE Annual   Technical Conference and Exhibition held in Houston, Texas, USA, 28-30   Sep.

[52] Wang, H. & Marongiu-Porcu, M. 2015. A Unified Model of Matrix   Permeability in Shale Gas Formations. Paper SPE 173196 presented at the SPE   Reservoir Simulation Symposium, held in Houston, Texas, USA, 23-25 Feb.

[53] Wang, H., Kumar, A., & Samuel, R.   2014. Geomechanical Modeling of Wellbore Stability in   Anisotropic Salt Formation. Paper SPE 169458 presented at the SPE Latin   American and Caribbean Petroleum Engineering Conference held in   Maracaibo, Venezuela, 21–23 May.

[54] Wang, H., Marongiu-Porcu, M., & Economides, M. J. 2014.   Poroelastic v.s Poroplastic Modeling of Hydraulic Fracturing. Paper SPE 168600   presented at the SPE Hydraulic Fracturing Technology Conference held   in The Woodlands, Texas, USA, 4–6 February.

[55] Wang, H., & Samuel, R. 2013, Geomechanical Modeling of   Wellbore Stability in Salt Formation. Paper SPE 116114 presented at the SPE   Annual Technical Conference and Exhibition held in New Orleans,   Louisiana, USA, 30 September–2 October.

神经网络和机器学习

[56] He,   S., Zou, Y., Quan, D. and Wang, H.,   2012. Application of RBF neural network and ANFIS on the prediction of   corrosion rate of pipeline steel in soil. Lecture Notes in Electrical Engineering. Springer, Berlin,   Heidelberg. Page 639-644.

[57] Wang, H and He, S. 2010. Genetic Algorism Solving Globe Optimal Problems of   Multi-peak RBF Neural Network Model Based on MATLAB. Microcomputer and Its Applications. Vol (13): 3-6.

[58] Wang,   H., and He, S. 2010. Predict Pipeline Steel Soil Corrosion Rate Using   Adaptive Neuro-Fuzzy Inference System. Proceeding of Computational and   Information Sciences, Dec. 2010, pp.1045-1048.

地下储能和地热

[59] Hu Z, Wang H. 2025. Feasibility study on the integration of subsurface pumped   energy storage into the power grid. Journal   of Energy Storage, Vol(138):118619.

[60] Wei,X., Wang,H. 2025. Evaluation of Geothermal Exploitation Using Abandoned   Horizontal Wells in Sichuan Basin. Journal   of Renewable and Sustainable Energy, Vol(17):033901

[61] Hu, Z., & Wang, H. 2025. A Study on the Optimal Design of Subsurface Pumping Energy   Storage Under Varying Reservoir Conditions. Energies, 18(19), 5252.

[62] Hu. Z, Wang, H. Zheng, S. 2024. Numerical Modelling of Energy Storage using Hydraulic   Fracturing in Shale Formations. Geoenergy   Science and Engineering, Vol(242):213424.

[63] Hu. Z, Wang, H. 2024. Feasibility study of geothermal assisted energy storage using   hydraulic fracturing. Geoenergy   Science and Engineering, Vol(242):123220.

[64] Hu. Z, Wang, H. 2024. Feasibility study of energy storage using hydraulic fracturing   in shale formations. Applied Energy,   Vol(354):122251.

 

版权所有©重庆大学资源与安全学院