王瀚艺
作者: 佚名 发布时间: 2022年06月08日 15:27 浏览次数:

姓 名

王瀚艺


职称职务

教授、博士生导师

联系方式

Email

hanyi.wang@cqu.edu.cn

联系地址

重庆市沙坪坝区沙正街174
重庆大学A区资源与安全学院/400030

研究方向

非常规油气开采、水力压裂、油气藏数值模拟、地热能开发、二氧化碳地质封存

本团队正在招聘弘深青年教师(年薪30-40万),欢迎相关专业背景的优秀人才加入

个人简历

王瀚艺,教授、博士生导师,获国家海外高层次人才项目资助。博士毕业于美国石油工程专业排名第一(US News Ranking)的德克萨斯大学奥斯汀分校石油与地质科学系。在研究生和博士阶段分别师从国际知名采油专家Michael J. Economides和美国工程院院士Mukul Sharma。拥有多年的海外工作经验,曾就职于斯伦贝谢等跨国公司,长期从事非常规地质能源(页岩油气、煤层气、致密油气、地热)开采技术和水力压裂研究。参与了美国多个盆地的页岩油气工程和科研项目,以及美国能源部主导的HFTS大型现场论证项目。(截至到20225月)相关成果在国际权威期刊和SPE顶级会议发表论文40余篇,总引用超过1300+, H因子21,授权美国发明专利2项。2篇论文被评为ESI高被引论文,1篇论文获得美国岩石力学协会(American Rock Mechanics Association)最佳论文奖。发表论文被石油天然气行业最具影响力的商业月刊《Journal of Petroleum Technology》多次报导。发表论文被美国斯坦福大学教授、美国工程院院士Mark Zoback 院士主讲的行业内最具影响力的网上公开课《Unconventional Reservoir Geomechanics》详细讨论。美国工程院院士Derek Elsworth、美国工程院院士Akhil Datta-Gupta、美国工程院院士Christine Ehlig-Economides、美国工程院院士张东晓和中国工程院院士李根生都在发表论文中引用和肯定了王瀚艺教授的相关研究工作。

学术兼职

担任SPE JournalSPE Production & OperationsJournal of Geophysical Research - Solid EarthInternational Journal of Solids and StructuresInternational Journal of Heat and Mass TransferEngineering Fracture MechanicsJournal of Natural Gas Science and Engineering Journal of Petroleum Science and Engineering FuelInternational Journal of Coal GeologyGeophysicsInterpretationRock Mechanics and Rock EngineeringWater Resources Research等油气、地质、岩土工程、渗流力学相关专业国际期刊审稿人/技术编辑

代表性研究项目

1. 国家海外高层次人才引进项目,2022-2025,主持;

2. 美国鹰堡盆地页岩凝析气产量瞬态分析研究,2019-2020,主持

3. 美国能源部水力压裂HFTS1大型现场实验论证项目,2016-2019,参与;

4. 美国马塞勒斯和尤蒂卡页岩气开采项目,2018-2019,参与;

5. 美国巴肯盆地页岩油小型压裂设计和分析,2017-2018,主持;

6. 美国德州二叠纪盆地页岩油压降和回流建模与分析,2016-2017,主持;

7. 巴西桑托斯盆地盐下油田井壁稳定性研究,2013-2015, 主持

8. 澳大利亚煤层气注热提高采收率研究,2013-2014,主持;

9. 四川盆地页岩气水平井随钻测量/测井, 2010-2012, 参与


代表性获奖

美国岩石力学协会(American Rock Mechanics Association)最佳论文奖(best paper award

代表性专利

System and Method for Improving Integrity of Cased Wellbores. US 16693224

Systems and Methods for Estimating Hydraulic Fracture Surface Area. US 10982535

代表性论文

谷歌学术主页:https://scholar.google.com/citations?user=FaUobqMAAAAJ&hl=en

代表性期刊论文

[1] Wang, H. 2022. Introduce a Novel Constant Pressure Injection Test for Estimating Hydraulic Fracture Surface Area. Journal of Natural Gas Science and Engineering (PrePrint). https://doi.org/10.1016/j.jngse.2022.104603

[2] Wang, H., McGowen, H and Sharma, M.M. 2021, Unified Transient Analysis (UTA) of Production and Shut-in Data from Hydraulic Fractured Horizontal Wells. Journal of Petroleum Science and Engineering Vol(209):109876. https://doi.org/10.1016/j.petrol.2021.109876

[3] Wang, H., Elliott, B.M. and Sharma, M.M. 2021, Pressure Decline Analysis in Fractured Horizontal Wells: Comparison between Diagnostic Fracture Injection Test, Flowback, and Main Stage Falloff. SPE Drilling and Completion. 36 (03): 717–729. https://doi.org/10.2118/201672-PA

[4] Wang, H and Sharma, M.M. 2020. A Rapid Injection Flowback Test (RIFT) to Estimate In-situ Stress and Pore Pressure. Journal of Petroleum Science and Engineering, Vol(190):107108. https://doi.org/10.1016/j.petrol.2020.107108

[5] Wang, H. 2019. A Non-isothermal Wellbore Model for High Pressure High Temperature Natural Gas Reservoirs and Its Application in Mitigating Wax Deposition. Journal of Natural Gas Science and Engineering, Vol(72):103016. https://doi.org/10.1016/j.jngse.2019.103016

[6] Wang, H. 2019. Hydraulic Fracture Propagation in Naturally Fractured Reservoirs: Complex Fracture or Fracture Networks. Journal of Natural Gas Science and Engineering, Vol(68): 102911. https://doi.org/10.1016/j.jngse.2019.102911

[7] Wang, H and Sharma, M.M. 2019. Determine in-situ Stress and Characterize Complex Fractures in Naturally Fractured Reservoirs with Diagnostic Fracture Injection Tests. Rock Mechanics and Rock Engineering, 52(12):5025-5045. https://doi.org/10.1007/s00603-019-01793-w

[8] Wang, H and Sharma, M.M. 2019. A Novel Approach for Estimating Formation Permeability and Revisit After-closure Analysis of Diagnostic Fracture Injection Tests. SPE Journal, 24(04):1809-1829. http://doi.org/10.2118/ 194344-PA

[9] Zhou, X., Yuan, Q., Rui, Z., Wang, H., Feng, J., Zhang, L. and Zeng, F., 2019. Feasibility study of CO2 huff'n'puff process to enhance heavy oil recovery via long core experiments. Applied Energy, Vol(236):526-539. https://doi.org/10.1016/j.apenergy.2018.12.007

[10]Zhou, X., Yuan, Q., Zhang, Y., Wang, H., Zeng, F. and Zhang, L., 2019. Performance evaluation of CO2 flooding process in tight oil reservoir via experimental and numerical simulation studies. Fuel, Vol(236):730-746. https://doi.org/10.1016/j.fuel.2018.09.035

[11]Wang, H and Sharma, M.M. 2018. Estimating Unpropped-Fracture Conductivity and Fracture Compliance from Diagnostic Fracture-Injection Tests. SPE Journal, 23(05):1648-1668. http://dx.doi.org/10.2118/ 189844-PA

[12]Mirani, A., Marongiu-Porcu, M., Wang, H. and Enkababian, P., 2018. Production-pressure-drawdown management for fractured horizontal wells in shale-gas formations. SPE Reservoir Evaluation & Engineering, 21(03):550-565. https://doi.org/10.2118/181365-PA

[13]Wang, H and Sharma, M.M. 2018. Modelling of Hydraulic Fracture Closure on Proppants with Proppant Settling. Journal of Petroleum Science and Engineering, Vol(171):636-645. https://doi.org/10.1016/j.petrol.2018.07.067

[14]Wang, H. 2018. Discrete Fracture Networks Modeling of Shale Gas Production and Revisit Rate Transient Analysis in Heterogeneous Fractured Reservoirs. Journal of Petroleum Science and Engineering, Vol (169):796-812. https://doi.org/10.1016/j.petrol.2018.05.029

[15]Wang, H., Yi,S., and Sharma, M.M.  2018. A Computationally Efficient Approach to Modeling Contact Problems  and  Fracture  Closure  Using  Superposition  Method.  Theoretical and Applied Fracture Mechanics, Vol(93): 276-287. https://doi.org/10.1016/j.tafmec.2017.09.009

[16]Wang, H and Sharma, M.M. 2017. A Non-Local Model for Fracture Closure on Rough Fracture Faces and Asperities. Journal of Petroleum Science and Engineering, Vol (154):425-437. http://dx.doi.org/ 10.1016/j.petrol.2017.04.024

[17]Wang, H. 2017, A Numerical Study of Thermal-Hydraulic-Mechanical Simulation with the Application of Thermal Recovery in Fractured Shale Gas Reservoirs. SPE Reservoir Evaluation & Engineering , 20(03): 513-531. http://dx.doi.org/10.2118/ 183637-PA

[18]Wang, H. 2017. What Factors Control Shale Gas Production and Production Decline Trend in Fractured Systems: A Comprehensive Analysis and Investigation. SPE Journal, Vol 22(02): 562-581. http://dx.doi.org/10.2118/179967-PA

[19]Wang, H. and Samuel, R. 2016, 3D Geomechanical Modeling of Salt Creep Behavior on Wellbore Casing for Pre-Salt Reservoirs. SPE Drilling & Completion, 31(04):261-272. http://dx.doi.org/10.2118/166144-PA

[20] Wang, H. 2016. Numerical Investigation of Fracture Spacing and Sequencing Effects on Multiple Hydraulic Fracture Interference and Coalescence in Brittle and Ductile Reservoir Rocks. Engineering Fracture Mechanics, Vol (157): 107-124. http://dx.doi.org/10.1016/j.engfracmech.
2016.02.025

[21] Wang, H. 2016. Poro-Elasto-Plastic Modeling of Complex Hydraulic Fracture Propagation: Simultaneous Multi-Fracturing and Producing Well Interference. Acta Mechanica, 227(2):507-525. http://dx.doi.org/10.1007/s00707-015-1455-7

[22] Wang, H., Marongiu-Porcu, M., and Economides, M. J. 2016. Poroelastic and Poroplastic Modeling of Hydraulic Fracturing in Brittle and Ductile Formations, SPE Production & Operations, 31(01): 47–59. http://dx.doi.org/10.2118/168600-PA

[23] Wang, H. and Marongiu-Porcu, M. 2015. Impact of Shale Gas Apparent Permeability on Production: Combined Effects of Non-Darcy Flow/Gas-Slippage, Desorption and Geomechanics. SPE Reservoir Evaluation & Engineering, 18 (04): 495-507. http://dx.doi.org/10.2118/173196-PA

[24] Wang, H. 2015. Numerical Modeling of Non-Planar Hydraulic Fracture Propagation in Brittle and Ductile Rocks using XFEM with Cohesive Zone Method. Journal of Petroleum Science and Engineering, Vol (135):127-140. http://dx.doi.org/10.1016/j.petrol.2015.08.010

[25] Wang, H., Ajao, O., and Economides, M. J. 2014. Conceptual Study of Thermal Stimulation in Shale Gas Formations. Journal of Natural Gas Science and Engineering, Vol (21): 874-885.  http://dx.doi.org/ 10.1016/j.jngse.2014.10.015

[26] He, S., Zou, Y., Quan, D. and Wang, H., 2012. Application of RBF neural network and ANFIS on the prediction of corrosion rate of pipeline steel in soil. Lecture Notes in Electrical Engineering. Springer, Berlin, Heidelberg. Page 639-644. http://dx.doi.org/ 10.1007/978-3-642-25781-0_93

[27] Wang, H and He, S. 2010. Genetic Algorism Solving Globe Optimal Problems of Multi-peak RBF Neural Network Model Based on MATLAB. Microcomputer and Its Applications. Vol (13): 3-6. http://dx.doi.org/10.3969/j.issn.1674-7720.2010.13.002

代表性会议论文

[1] Wang, H., and Sharma, M.M. 2021. Unified Pressure and Rate Transient Analysis for Production and Shut-in of Fractured Horizontal Wells. Paper SPE 204136 presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 4 - 6 May. http://dx.doi.org/10.2118/ 204136 -MS.

[2] Wang, H., Elliott, B.M. and Sharma, M.M. 2020. Estimating Reservoir and Fracture Properties from Stage-by-stage Pressure Decline Analysis in Horizontal Wells. Paper SPE 201672 presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 27-29 October. http://dx.doi.org/10.2118/201672-MS.

[3] Zheng, S., Manchanda, R., Wang, H. and Sharma, M.M. 2020. DFIT Analysis and Interpretation in Layered Rocks. Paper SPE 199690 presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 4 - 6 Feb. http://dx.doi.org/10.2118/ 199690-MS.

[4] Wang, H and Sharma, M.M. 2020. A Rapid Injection Flow-back Test (RIFT) To Estimate In-situ Stress and Pore Pressure in A Single Test. Paper SPE 199732 presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 4 - 6 Feb. http://dx.doi.org/10.2118/ 199732-MS.

[5] Zheng, S., Manchanda, R., Wang, H. and Sharma, M., 2019, July. Fully 3-D Simulation of Diagnostic Fracture Injection Tests with Application in Depleted Reservoirs. Paper presented at the Unconventional Resources Technology Conference, Denver, Colorado, 22-24 July. https://doi.org/10.15530/urtec-2019-314

[6] Wang, H and Sharma, M.M. 2019. A Novel Approach for Estimating Formation Permeability and Revisit After-Closure Analysis from DFIT. Paper SPE 194344 presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 5-7 Feb. http://dx.doi.org/10.2118/ 194344-MS.

[7] Wang, H and Sharma, M.M. 2018. Estimating Fracture Closure Stress in Naturally Fractured Reservoirs with Diagnostic Fracture Injection Tests. Paper ARMA-2018-225 presented at the 52nd US Rock Mechanics / Geomechanics Symposium, held in Seattle, Washington, June 17-20.

[8] Wang, H and Sharma, M.M. 2018. Estimating Unpropped Fracture Conductivity and Compliance from Diagnostic Fracture Injection Tests. Paper SPE 189844 presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, 23 - 25 Jan. http://dx.doi.org/10.2118/ 189844-MS.

[9] Wang, H and Sharma, M.M. 2017. New Variable Compliance Method for Estimating Closure Stress and Fracture Compliance from DFIT data. Paper SPE 187348 presented at the SPE Annual Technical Conference and Exhibition held in San Antonio, TX, USA, 09 – 11 October. http://dx.doi.org/10.2118/ 187348-MS

[10]Mirani, A., Marongiu-Porcu, M., Wang, H., and Philippe, E. 2016. Production Pressure Drawdown Management for Fractured Horizontal Wells in Shale Gas Formations. Paper SPE 181365 will be presented at the SPE Annual Technical Conference and Exhibition held in Dubai, UAE, 26-28 Sep. http://dx.doi.org/10.2118/181365-MS

[11]Wang, H. 2016. What Factors Control Shale Gas Production Decline Trend: A Comprehensive Analysis and Investigation. Paper SPE-179967-MS presented at the SPE/IAEE Hydrocarbon Economics and Evaluation Symposium, held at Houston, Texas, 17-18 May.  http://dx.doi.org/10.2118/ 179967-MS

[12]Samuel, R & Wang, H. 2015, Optimized Centralizer Placement for Pre-Salt Formation. Paper OTC 26092 presented at the Offshore Technology Conference held in Rio de Janeiro, Brazil, 27–29 October. http://dx.doi.org/10.4043/26092-MS

[13]Wang, H., Merry, H., Amorer, G. & Kong, B. 2015. Enhance Hydraulic Fractured Coalbed Methane Recovery by Thermal Stimulation. Paper SPE 175927 presented at the SPE Unconventional Resources Conference to be held in Calgary, Alberta, Canada 20–22 Oct. http://dx.doi.org/10.2118/175927-MS

[14]Yue, L.,Wang, H., Suai, H., & Nikolaou, M. 2015. Increasing Shale Gas Recovery through Thermal Stimulation: Analysis and an Experimental Study. Paper SPE 175070 presented at the SPE Annual Technical Conference and Exhibition held in Houston, Texas, USA, 28-30 Sep. http://dx.doi.org/10.2118/175070-MS

[15]Wang, H. & Marongiu-Porcu, M. 2015. A Unified Model of Matrix Permeability in Shale Gas Formations. Paper SPE 173196 presented at the SPE Reservoir Simulation Symposium, held in Houston, Texas, USA, 23-25 Feb. http://dx.doi.org/10.2118/173196-MS

[16] Wang, H., Kumar, A., & Samuel, R. 2014. Geomechanical Modeling of Wellbore Stability in Anisotropic Salt Formation. Paper SPE 169458 presented at the SPE Latin American and Caribbean Petroleum Engineering Conference held in Maracaibo, Venezuela, 21–23 May. http://dx.doi.org/10.2118/169458-MS

[17] Wang, H., Marongiu-Porcu, M., & Economides, M. J. 2014. Poroelastic v.s Poroplastic Modeling of Hydraulic Fracturing. Paper SPE 168600 presented at the SPE Hydraulic Fracturing Technology Conference held in The Woodlands, Texas, USA, 4–6 February. http://dx.doi.org/10.2118/168600-MS

[18] Wang, H., & Samuel, R. 2013, Geomechanical Modeling of Wellbore Stability in Salt Formation. Paper SPE 116114 presented at the SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 30 September–2 October. http://dx.doi.org/10.2118/166144-MS

[19] Wang, H., and He, S. 2010. Predict Pipeline Steel Soil Corrosion Rate Using Adaptive Neuro-Fuzzy Inference System. Proceeding of Computational and Information Sciences, Dec. 2010, pp.1045-1048. http://dx.doi.org/ 10.1109/ICCIS.2010.258



版权所有©重庆大学资源与安全学院